Rockwell Automation External LTS Template

Flux Vector AC Drive Control VS Servo Drive Control Presented by: Kevin Miller- Motion Automation Eng Schaedler-Yesco Darryl Jacobs- Technical Consultant Rockwell Automation Copyright 2005 Rockwell Automation, Inc. All rights reserved. 1 Todays Agenda 1.1.Flux FluxVector VectorAC ACdrive drivetheory theory(FORCE) (FORCE) 2.2.Servo ServoDrive DriveControl Controltheory theory 3.3.Application ApplicationExamples Examples

4.4.Technical Technicalperformance performancecomparisons comparisons 5.5.Rockwell RockwellAutomation Automationsolutions solutions Copyright 2005 Rockwell Automation, Inc. All rights reserved. 2 Basic Control Classes for AC drives Basic Volts/Hertz Volts/Hertz Volts/Hertz Control Control (V/Hz) (V/Hz) Enhanced V/Hz Vector Control V/Hz V/Hzwith withcurrent current limiting, boost, limiting, boost,and

and slip comp slip comp Sensorless SensorlessVector Vector Control with Control with slip slipcomp. comp. I heard of space vector, sensorless vector, flux vector and just about every under the sun vector drive. What does all this mean? Copyright 2005 Rockwell Automation, Inc. All rights reserved. Flux FluxVector Vectoror or Field Oriented Field Oriented Control Control w/ out w/ outEncoder

Encoder Flux FluxVector Vectoror or Field Oriented Field Oriented Control Control w/ Encoder w/ EncoderFdbk Fdbk 3 Breaking through the vector messages Older and less expensive drives were limited to a volts per hertz ratio output. You could cap or limit the output current, add some boost start voltage level and more advanced drives allowed recalculating the voltage ratio to frequency or vector delta. Motor thermal protection was limited to current levels and Klixon contacts. More advance systems such as sensorless vector added I2T motor thermal modeling, better processors to calculate for faster response to load changes, takes into account the flux producing or magnetizing current that develops motor torque. Essentially sensorless vector offered best breakaway current torque performance across the entire speed range. Still the flux producing current is set to a level but not controlled. Adding encoder feedback options adds more finite samples in hard speed reference to supplement speed control and shorten response time. Copyright 2005 Rockwell Automation, Inc. All rights reserved.

4 Vector Control vs Flux Vector Vector Control Acknowledges that motor current is the vector sum of the torque and flux currents and uses this information to provide better control of motor speed/torque. Flux Vector Control The ability to independently control the flux and torque in a motor for the purpose of accurate torque and power control. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 5 What is Flux Vector Control ? The ability to independently control the flux and torque producing components of current in an motor for the purpose of accurate torque and power control. The significance of this is now beyond simply controlling the total current and voltage we can control the torque producing components in the motor just as independently as we can control voltage and overall current. Now the need for slip compensation to make up for a calculated torque slip factor of the motor is not needed as we now control what the torque differential is. Standard NEMA type induction motors always have a slip in design. This means we have control of production torque current across the speed range, not exclusively dependent on the motor natural torque curve. Adding a feedback device enhances all control regulation.

Copyright 2005 Rockwell Automation, Inc. All rights reserved. 6 What advantage does flux vector offer? Offers pure torque control to not break shafts or hold a web tension. Allows for holding torque at very low or zero speeds. Great for lifts or momentary hold in place until a brake can be applied or released. Maximizes with control how much torque can be produced out of a motor. This becomes a DC drive displacer as faster current response and torque control are equal to or better than DC drives. This does away with the typical DC motor wear issues with more standard induction motors. Flux vector offers a better bus regulation system as now more factors other than simply reducing output frequency are used to keep the DC bus level in check. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 7 What is field oriented control? In Allen Bradley its referred to as FORCE technology. This kicks the flux vector control level up a notch by adding a voltage component to the flux control feedback. Typically flux vector control calculates this value where FORCE will control all components of the flux producing magnetic field. Motor thermal calculations are now part of the control, not reacting. What this allows is even better bandwidth control, response and low speed torque control. Improving the bandwidth now tightens positional reference drift simply because the numbers are more finite. This means more torque and better low speed response. The same bandwidth improvement offers more advantages with high

resolution feedback and works high torque/high speed/low power motors such as permanent magnet servo motors with low inertia. With FORCE keeping tighter controls of all facets of the motor it permits more servo like applications requiring tighter motor control. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 8 Sensorless Vector Encoderless PowerFlex70 5HP-ND Tuned Settings 3 2.5 2.5 Torque (Per-Unit) 3 2 1.5 1 0.5 0 2 1.5 1 0.5 0 0

10 20 30 40 50 60 70 80 90 100 0 2 4 Frequency (HZ) 6 8 10

12 Frequency (HZ) Separates current and voltage control PowerFlex70 5-HP Tuned Settings 3 Torque (Per-Unit) Torque (Per-Unit) PowerFlex70 5HP-ND Tuned Settings 2.5 2 1.5 1 0.5 0 0 0.2 0.4 0.6 0.8 1 1.2

1.4 1.6 1.8 2 2.2 Frequency (HZ) Copyright 2005 Rockwell Automation, Inc. All rights reserved. 9 Flux Vector Encoderless AB PF700VC 5Hp - Optimized Settings AB PF700VC 5Hp - Optimized Settings 2.5 3.0 2.0 2.5 Torque (Per-Unit) 1.5

1.0 0.5 0.0 0 10 20 30 40 50 60 70 80 90 100 Frequency (HZ) 2.0 1.5 1.0 0.5 0.0 0

2 4 6 8 10 12 Frequency (HZ) AB PF700VC 5Hp - Optimized Settings 3.0 Torque (Per-Unit) Torque (Per-Unit) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.2 0.4

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Frequency (HZ) Copyright 2005 Rockwell Automation, Inc. All rights reserved. 10 Flux Vector w/ Encoder AB PF700VC 5Hp - Optimized Settings (With Encoder) Torque (Per-Unit) 3.0

2.5 2.0 1.5 1.0 0.5 0.0 -2 0 2 4 6 8 10 12 Frequency (HZ) Copyright 2005 Rockwell Automation, Inc. All rights reserved. 11 FOC w/ Encoder AB PF700S 5Hp - With Encoder Feedback 3.5 3.0 2.5

3.0 Torque (Per-Unit) 3.5 2.0 1.5 1.0 0.5 0.0 2.5 2.0 1.5 1.0 0.5 0.0 0 10 20 30 40 50 60

70 80 90 100 0 2 4 Frequency (HZ) 6 8 10 12 Frequency (HZ) AB PF700S 5Hp - Encoder Feedback 3.5 Torque (Per-Unit) Torque (Per-Unit) AB PF700S 5Hp - With Encoder Feedback

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Frequency (HZ)

Copyright 2005 Rockwell Automation, Inc. All rights reserved. 12 Performance Comparison Control Mode Fan/Pump or Custom V/Hz with slip comp SVC with slip comp SVC with feedback FOC or Flux Vector without feedback FOC or Flux Vector with feedback Typical DC Speed Regulation (% of base speed)

+/- 0.5% +/- 0.5% +/- 0.1% +/- 0.1% +/- 0.001% +/- 0.001 % Operating Speed Range 40:1 80:1 80:1 120:1 1000:1 1000:1 Speed Bandwidth 10 rad/sec 20 rad/sec

20 rad/sec 50 rad/sec 250 rad/sec (VC) 300 rad/sec (S) 100 rad/sec Torque Regulation NA NA NA +/-10 % +/- 5 % +/- 5% Torque Bandwidth NA NA NA 600 rad/sec

2500 rad/sec 950 rad/sec Copyright 2005 Rockwell Automation, Inc. All rights reserved. 13 What is .. The Difference between Field Oriented Control (700S) and Flux Vector Control (700VC) No voltage feedback on 700VC, voltage fdbk is approximated Both the Powerflex 70 Enhanced control and Powerflex 700 offer the setting options of sensorless vector or flux vector control in the same drive. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 14 Lets discuss what motion control is So far with AC drives we have discussed speed and torque control. What servo motion control adds to the mix: *Maintaining position control *Speed, torque and position adjustments on the fly *Coordinating drive/motor running profiles or axis together *Having velocity and acceleration independent *Homing to a known start position *Repeatable and concise steps *Camming or following a pattern beyond just a speed ratio Copyright 2005 Rockwell Automation, Inc. All rights reserved.

15 The blurry line between drives and servos today. The Powerflex 700 VC drive today can do: Torque Proving with fast brake control Indexing function with homing Speed profile blending all without a PLC, using a standard induction motor and standard encoder feedback. This offers an option to use standard like parts across small and large HP ranges. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 16 The blurry line between drives and servos today. The Powerflex 700S with Drivelogix goes even further in offering: *Electronic Gearing *Absolute Position Control *High resolution feedback capable *Dual feedback device capable *High speed Synchlink control (50 microsec) and co-orination *Will run standard AC motors and servo motors *Uses standard AC drive components and accessories *Accepts 25 most common RSLogix5000 motion commands. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 17

Powerflex 700 applications Powerflex 70 and 700 handle a wide variety of VT and CT applications with common AC induction motors. Fans Pumps Conveyors Palletizers Lifts Automated Storage and Retrieval Food Packaging Machine Tool virtually anywhere motor speed or torque control is applied. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 19 PowerFlex 700S / Applications

Backery Line Coating Lines Roll Grinding Tenter Frames Hoist Bottling Re-winder Plaster board Line Accelerator rolls Stamping Nip Rolls Copper Line Converting Lab Lines Spline Rolling Machine Coating Lab Line Lay on Roll for Turret Winder Turntable Transfer Copyright 2005 Rockwell Automation, Inc. All rights reserved. 20 Where do servo drives make more sense Where speed regulation is precise. Where positioning in precise and must be repeatable. Where gearing and transmissions are required while maintaining position accuracy. Much easier to coordinate multiple axis operation. Where many different move types with varying accel/decel profiles are required. When precise speed, torque, position and axis move coordination are all required to perform the task.

Where getting the best match motor to match the load requires is essential for best performance at the best cost. In short something designed for the job. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 21 Some basic servo motion control differences Motion control typically runs in a very tight accuracy range for speed and position. A feedback device is almost always used. Servo tackles moving a load with high speed motors attached to low gearing. This affords high accuracy at slow speeds, higher velocity points and smallest possible hardware. Its the current that costs real money in hardware. Servo motors and drives are designed to handle very quick acceleration and deceleration ramps. This high velocity ramp affords tremendous torque. Zero speed for holding torque is common with motor brakes just for parking. Motion controllers have the ability to adjust to maintain a positional reference, can maintain a home position reference via tracking and/or absolute feedback. Servo motors typically can produce 2 to 2.5 times their rated torque in peak delivery. As such most servo drives peak at 200% Copyright 2005 Rockwell Automation, Inc. All rights reserved. 22 Comparing Performance PF700S with Drivelogix Ultra3000

Ultra5000 Kinetix 6000 Position Loop Task Update Time 1msec 1msec 500 usec 125 usec Velocity Loop Task Update Time 250 usec 250 usec 250 usec 125 usec Sercos Minimum Cycle Time N/A 1 msec

N/A 500 usec Registration input time 8msec 4-8 usec 4-8 usec 3usec Torque Control Task Update Time 125 - 250 usec 125 usec 250 usec 125 usec Across the board servo drives are design for much faster control update rates. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 23

Some basic servo motion control differences Servo motor permanent magnet design is high torque delivery, low inertia, high speed with quick acceleration to fit in tight spaces. Mountings and shafts are design for plum direct mounting. The longer case design is to maximize torque at all speeds with great heat dissipation for quick speed changes over a very wide speed range. This same design offers very incremental concise moves. Same no blower design to 7250RPM A fast response drive to control this type of motor. Standard round frame AC motors are designed with gaps in 2 to 8 pole configurations more suitable speed and torque regulation, not positioning. The motor itself is really a transformer with the stator to rotor pull being the secondary. The exception is a true laminated motor. More poles means more torque but usually more slip. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 24 Motion Control via Servo Closed Loop Position Servo Motion Control

Definition Standard Drives -vs- Closed Loop Position Servo Motion Control Position control with the ability to stay on track. Typical drive application will allow position to slip with no means of recovery without manual homing. Applications include: Converting Industry Example Packaging Industry Example Food & Beverage Example Assembly Example Metal Forming Example Servo Motion Control Define Closed Loop Position Servo Motion Control Motion Control is the process of managing or directing the movement of machinery or equipment. Automated equipment employing Closed Loop Position Servo Motion Control will provide machine movement that is: Accurate- Capable of moving to a precise position! Repeatable- Capable of moving to the same precise position every time the machine is commanded to do so! Servo Motion Control

Define Closed Loop Position Servo Motion Control The Pick & Place motion application on the right is used in a variety of industries. Application examples include product transfer lines, component insertion, etc.. The Pick & Place example further clarifies the concept of Accurate and Repeatable. Accurate: The Pick & Place unit is typically commanded to precise locations to assure that packages or components are inserted to specification. Precision is determined by the application requirements. Position accuracy of XX.0010 (accurate to 1 thousandth of an inch) are common. Pick and Place Position 2 Position 1 Servo Motion Control Define Closed Loop Position Servo Motion Control Repeatable: Closed Loop Position Servos are frequently applied in a production environment where thousands of identical assemblies are manufactured daily. To assure product quality and reliability, components must be assembled to tight tolerances (identical). Motion Controllers typically move to multiple positions each time a part is manufactured. It must be capable of repeating those exact movements for each part. Pick and Place Position 2

Position 1 Servo Motion Control Define Closed Loop Position Servo Motion Control Standard Drives vs-Closed Loop Position Servo Frequently, people ask, What is the difference between a Standard Drive and a Closed Loop Position Servo? Speed controlled by a Standard Drive Typically, In Standard Drive applications, speed (velocity) is the main control parameter. Rotary Knives are frequently used in industry to cut material to specified lengths. In this Rotary Knife example a Standard Drive is used to control the speed of the Material(aka Web) feed. Rotary Knife Servo Motion Control Define Closed Loop Position Servo Motion Control Standard Drives vs-Closed Loop Position Servo In Closed Loop Position Servo applications position is the main control parameter. Velocity can vary to maintain position. Position of Knife

controlled by Closed Loop Position Servo The Closed Loop Position Servo ( AKA Servo) is used to position the cutter to cut the material to the desired length. Rotary Knife Servo Motion Control Application Examples of Motion Control in Industry In packaging applications, Servo Driven Smart Belts are used to position randomly spaced packages into evenly spaced packages. The evenly spaced packages are fed to downstream equipment for further processing. Smart Belts typically use photo-eyes to detect product. These Photo-eyes are typically wired to a special motion controller high speed input called a Registration Input. Smart Belt Photo-eye wired to Motion Controllers Registration Input Servo Motion Control Application Examples of Motion Control in Industry Vertical Form, Fill & Seal machines are used in the food industry for a wide variety of packaging

applications. Applications include high speed candy packaging and low speed coffee packaging. Typically, product is fed into a pouch and sealed on both ends. Servos are used to feed the packaging material and to seal/cut the pouch on both ends of the package. Servos eliminate waste by feeding the packaging material to the proper length while synchronizing the cutter. Vertical Servo driven packaging material feed. Servo driven cutter in synchronization with material feed. Servo Motion Control Application Examples of Motion Control in Industry In the semiconductor industry, the Wet Bench is used for transferring sliced semiconductor wafers through a series of chemical baths to clean and remove residue left from the slicing of the semiconductor wafer. A servo driven mechanical actuator is used to lift the boat of wafers out of the dip tank. A longer horizontal servo driven actuator is used to shuttle the load from one tank to another. Ball Screw Actuator converts rotary motion to linear motion.

Wet Bench Belt Actuator converts rotary motion to linear motion Servo Motion Control Application Examples of Motion Control in Industry Press feeds are used to feed sheet steel in to a mechanical press. Press machinery is used in a variety of industries including automotive and motor manufacturing. Servos are used to feed material into the press in correct lengths. In this application, the servo motors rotates pinch rolls( apply pressure and pull material). Product lengths can be modified in the motion controller. Press Feed Basics of Motion Hardware and Factors Basic Motion Hardware These are some of the basic hardware items involved in motion. Servo Motor Servo Drive Actuator Transmission Stage Motor Current Motor Voltage

Motion Controller Motion Controller Software Overtravel Switch Home Switch Brake Control, feedback, brake and power cables. Basic Motion Application Sizing and Operation *Total and Mismatch Inertia *Bus Utilization *Cycle Profile or Indexing *Registration *Gearing *Shunt Requirements *Rotary or Linear load *Absolute Feedback Peak Torque/Velocity/Current *Continuous and Peak Stall Torque Basics of Motion Hardware Basic Motion Hardware The Pick and Place example is an interesting linear application to study in greater detail. It

employs the basic motion components. Motor with Feedback Transmission Stage Negative Overtravel Limit Switch Movement Home Limit Switch Load Table Ballscrew Machinery Positive Overtravel Limit Switch Basics of Motion Hardware Basic Motion Hardware The shaded area below identifies the major controller components of a motion control system. In the next series of slides, well define the basic operation of each component and explain how they interact with each other to function as a system.

Transmission Stage Motor with Feedback Negative Overtravel Limit Switch Movement Home Limit Switch Load Table Motor Power Machinery Positive Overtravel Limit Switch Ballscrew Position Feedback Command Signal Servo

Drive Motion Controller Position Feedback Copyright 2005 Rockwell Automation, Inc. All rights reserved. Motion Software 37 Basics of Motion Control in Operation Basic Motion Hardware Motion Controller Functions Control the Motion When executing motion programs, motion controllers provide precise control of: Position Velocity Acceleration In a typical AC drive application the acceleration rate is a constant 0 to maximum speed value unless set by another action such as a digital input. Motion Controllers maintain precision by continually comparing the machines actual position (Position Feedback) to where it should be (Commanded position). The Command Signal to the machine corrects errors very quickly. Machine Motion

Command Signal Position Feedback Motion Controller Copyright 2005 Rockwell Automation, Inc. All rights reserved. 38 Basics of Motion Hardware Basic Motion Hardware The Motion Controller is the Brains of the system. Motion controllers serve (3) primary functions: Motion Controller Functions Motor with Feedback Store and Execute Motion Programs Motor Power Store Configuration Parameters Control the Motion Position Feedback Command Signal

Servo Drive Motion Controller Position Feedback Copyright 2005 Rockwell Automation, Inc. All rights reserved. Motion Software 39 Basics of Motion Basic Motion Hardware Servo Drives interpret the Motion Controller command signal and control the amount of speed and torque delivered by the motor. Drives accomplish this task by converting plant power to the voltage and current levels required by the motor to control the application. The commands can be analog, digital, networks or fiber interface. One thing to take notice of here is were getting into more control cabling and addition programming than a typical drive application. Motor with Feedback Motor Power Plant

Power Position Feedback Command Signal Servo Drive Motion Controller Position Feedback Copyright 2005 Rockwell Automation, Inc. All rights reserved. Motion Software 40 This sounds complicatedany way to simplify? Selecting the best solution has never been easier. It starts with a good machine concept and hard mechanical load data. Rockwell Automation Motion Analyzer software can walk through the moves, offer hardware choices and show all possible solutions in graphic detail. Best part is its a free download. Most important is consult with your Schaedler-Yesco motion specialist.

Copyright 2005 Rockwell Automation, Inc. All rights reserved. 41 That sure looks like a lot of wires For applications where a single axis, simple digital, analog or pulse reference control is required, Allen Bradley offers: Ultra 1500 (115V & 230V) Ultra 3000 (230V and 460V) Ultra 3000 Indexer Ultra 3000 Devicenet (w/Indexer too) Ultra 5000 stand alone controller Ultraware drive set up software A huge variety of pre-molded control and feedback cables and breakout terminal boards Micrologix with pulse output control Contrologix 2 axis analog servo control card but there is a better way Copyright 2005 Rockwell Automation, Inc. All rights reserved. 42 Motion in Integrated Architecture A motion control system that allows you to connect over a SERCOS fiber optic ring to the following drives:

Kinetix 6000 Kinetix 7000 Ultra3000 1394 A combination of architecture, world class A-B motion products, and motion application expertise. Kinetix motion is part of Integrated Architecture. A cost effective integrated solution that provides you with everything you need to be cost-effective and competitive. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 43 Where does Kinetix fit? pick and place robotics Any application that requires:

accurate positioning of product rapid acceleration/deceleration precise speed control with varying loads repeatability, accuracy, cycle timing, maintenance of mechanical clutches/brakes an entire Rockwell Automation machine system solution case packing positioning conveyors canning pharmaceutical packaging wrapping automated assembly tire assembly cartoning metal forming food processing palletizing press feed

electronic line shafting flow wrapping laminating labeling bottling pouch filling Copyright 2005 Rockwell Automation, Inc. All rights reserved. 44 Motion control already in RSLogix5000 components are eliminated one integrated sequential and motion controller one software package 1 Processor 2 Software Packages 2 Programming Languages Extra Communication Logic 1 Software

Package 1 Programming Language Extra Coordinati on Logic Copyright 2005 Rockwell Automation, Inc. All rights reserved. 45 Time is money less expensive and easier to wire fewer axis module cards required two fiber connections replace 18 discrete wires per drive, eliminating 36 terminations per axis fewer components to wire Completely digital interface analog terminal block fiber optic connection less time required to implement

already integrated plug and play modules easy to add axes faster to start up easier to troubleshoot only one software package to purchase and learn Copyright 2005 Rockwell Automation, Inc. All rights reserved. 46 Less connections, faster uptime, lower total cost smaller enclosure panel requirements saves money and floor space Eliminates lots of cabling for each axis All motion controller function resides in the Contrologix ControlLogix SERCOS Interface Motion Modules M16SE and PM16SE 16 axes SERCOS Module/Card with one fiber cable M08SE M03SE 8 and 3 axes SERCOS Module and 1756-L60M03SE Compactlogix 1768-M04SE 4 axis module Copyright 2005 Rockwell Automation, Inc. All rights reserved. 47 Overall Wiring Reduction With Kinetix Integrated Motion Using The Kinetix 6000 Kinetix

Traditional The Thenew newscience scienceofofintegrated integratedmotion motion Motion Controller 8 axis system example Copyright 2005 Rockwell Automation, Inc. All rights reserved. 48 Overall Wire Terminations Reduction Same 8 axis example showing control and power wiring comparison. 90 Total 28 48 4 16 16 Kinetix

The Thenew newscience scienceofofintegrated integratedmotion motion 157 g n i r i W e v i r D o t r e 134 l l g o r n i t

r i n W o O / C I n o i t a r t 58 s i g e g R n i r i W r e w o P

l o r t n o C 136 3 Phase Power Wiring 485 Total Total Traditional Copyright 2005 Rockwell Automation, Inc. All rights reserved. 49 What was that box feeding the servo drives? Line Interface Module (LIM) Copyright 2005 Rockwell Automation, Inc. All rights reserved. 50 How else is it easier to use? Start up is easier Drop down boxes and wizards High resolution feedback eliminates the need to tune servo drives in all but the most extreme cases Drives located remote from the control

each segment (node-to-node) of a SERCOS ring can be up to 32 meters in length using economical plastic fiber, or up to 200 meters using glass fiber. RSLogix 5000 Direct Commands Online direct execution of motion commands -- no application program needed Copyright 2005 Rockwell Automation, Inc. All rights reserved. 51 What are the facts on speed of commissioning? One software package (RSLogix 5000) Information enabled devices allow configuration, tuning, programming and monitoring out of one single package. Plug and play from one place. Typical time savings of 20% per axis One example of 40% total time saved SERCOS allows drive replacement without reconfiguration Copyright 2005 Rockwell Automation, Inc. All rights reserved. 52 How else is it easier to use? Simpler to Program 37 motion instructions

simple to add motion commands to the application program. No need to learn a cryptic motion programming language. Choice of three IEEE-61131-3 languages: Ladder Structured Text (ST) Sequential Function Chart (SFC) Extensive use of graphical tools simplifies creating and implementing complex motion profile. RSLogix5000 is the only programming package required to completely configure, program, and commission a motion system. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 53 How can this help me? High performance high resolution feedback option improves positioning accuracy and reduces cycle times absolute feedback option eliminates time consuming homing cycles super fast, up to 64s loop closure ensures accurate load positioning digital commands replace range limited analog signals Improved diagnostics detailed drive and motor status information is available in RSLogix 5000 and the ControlLogix/Compactlogix/SoftLogix application program

drive fault and status information is displayed in descriptive text, eliminating the need to interpret cryptic codes graphical trending allows important motion parameters to be collected and viewed All built in to RSLogix 5000 Copyright 2005 Rockwell Automation, Inc. All rights reserved. 54 Where does Kinetix make more sense Multiple axis set up and control start to finish is far quicker with Kinetix. Coordinating axis is inherently easier. Information enabled hardware enhances time to running. Configure, tune and program all from the same software. Widest offering of motor ranges and accessories. SERCOS reduced connection count with outstanding performance. Simpler code reuse Better integration for monitoring and diagnostics Kinetix space saving rack mount design Reduced cabling time and cost Single control connection system Integral safety relay system In short products designed to do the job with the best time to market. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 55 So when do I use a standard drive or servo drive?

Evaluate your installed base of hardware, controllers and trained staff. Evaluate how repeatable and accurate the application is. Review what has to be mechanically interfaced. Identify the required speed and power range. Do you need to know where in the process you are if power fails. Review how distributed the application control is. Does the hardware configuration make more sense to connect via a network or digital interface? Review the needs of the application with which approach is best addressed with standard hardware. Discuss the application with your Schaedler-Yesco Allen Bradley automation specialist. Copyright 2005 Rockwell Automation, Inc. All rights reserved. 56 Allen Bradley drives solutions 115V to 6190V .5HP to 10,000HP

Standard NEMA1 to 4X Configured boxed solutions Application Solutions software Common accessories, look and feel Drives for simple and challenging applications Copyright 2005 Rockwell Automation, Inc. All rights reserved. 57 Kinetix Family of Servo Drives .1 KW .25 KW 1.2 KW 6.6 KW 15 KW 18 KW 22 KW 93 KW 150 KW Ultra3000 Kinetix 2000* Kinetix 6000 CompactLogix CompactLogixwith with

SERCOS SERCOSInterface Interface 44axis axiscontrol control Highly integrated motion control SERCOS over the entire power range with Kinetix Kinetix 7000 * Available summer 2006 Copyright 2005 Rockwell Automation, Inc. All rights reserved. 58 Thanks for your attention! Copyright 2005 Rockwell Automation, Inc. All rights reserved. 59

Recently Viewed Presentations

  • BIODIVERSITY - Mrs. Melino

    BIODIVERSITY - Mrs. Melino

    Turn to a partner and define Biodiversity. Write it down. All groups will share with class. "Extinction is the most irreversible and tragic of all environmental calamities. With each plant and animal species that disappears, a precious part of creation...
  • DIVISION I GOVERNANCE UPDATE Brandy Hataway Kris Richardson

    DIVISION I GOVERNANCE UPDATE Brandy Hataway Kris Richardson

    Board of Directors(24 total: 20 presidents, 1 director of athletics, 1 faculty athletics representative (FAR), 1 female administrator and 1 student-athlete advisory committee (SAAC) representative). Overall governing body for Division I, with responsibility for strategy, policy, governance and membership.
  • Successful Technology Interventions:

    Successful Technology Interventions:

    - using a Communication Matrix virtual CoP designed to be used by parents and teachers collaboratively to improve communication outcomes for students with complex communication needs (CCN), such as autism, multiple disabilities, deaf-blindness that are not well captured by typical...
  • KANTIAN ETHICS OBLIGATIONS - WordPress.com

    KANTIAN ETHICS OBLIGATIONS - WordPress.com

    Is such behavior universalizable? Would he be using the person as a means or as an end? Kant's Examples: # 3 A person has a talent which he could develop to benefit himself and others, but he prefers not to...
  • Construction Planning and Scheduling

    Construction Planning and Scheduling

    Activities F and H have the same total float (TF=2) because both of them can be delayed two days without delaying the project. Activity F has no free float because any delay in activity F will delay the start of...
  • East Asia 1919-1939

    East Asia 1919-1939

    1956-7 Hundred Flowers Campaign. Mao felt the revolution needed the support of the intellectual class. Inspired by Khrushchev's more liberal approach, Mao relaxed restrictions on public criticism of the party. "Let a hundred flowers bloom, and a hundred schools of...
  • Graphs - Carnegie Mellon School of Computer Science

    Graphs - Carnegie Mellon School of Computer Science

    4-color theorem remains challenging Graphs Question: Question: Question: Question: Cayley's formula Another Proof of Cayley's Formula Graph Coloring A coloring of a graph is an assignment of a color to each vertex such that no neighboring vertices have the same...
  • Introduction - Los Angeles Mission College

    Introduction - Los Angeles Mission College

    (smooth) internal ridge on last ring called carina (cough reflex) adventitia binds it to other organs 23-* Histology of the Trachea Ciliated pseudostratified columnar epithelium Hyaline cartilage as C-shaped structure closed by trachealis muscle Trachea and Bronchial Tree Airway Epithelium...