CPE 332 Computer Engineering Mathematics II

CPE CPE 332 332 Computer Computer Engineering Engineering Mathematics Mathematics IIII Week 10 Part III, Chapter 7 Error, Transcendental Function and Power Series Today Topics

Numerical Methods Errors Transcendental Function Series Power Series Taylor Series MacLaurin Series Function Approximation HW VII QZ IV Next Week MT Exam and Cumulative Grades Numerical Methods Solution

Derivative Integrate Differential Equation Fourier Transform, Laplace Transform Z-Transform Analytical Method ( Explicit Form) Numerical Method Numerical Methods Numerical Graphical Method Interpolation Algorithm

(Error Analysis) Convergence Complexity Algorithm Y=f(x)=2x -4x -7x+5 3 2 f(k) f(0), f(-2), f(7) f(x)=k x f(x) = 0 Quadratic Equation Polynomial Degree = 1, Straight Line y = f(x) = mx+b; x = (y-b)/m Polynomial Degree = 2 y = f(x) = ax2+bx+c y = f(x) = 3 y = f(x) = ax2+bx+(c-3) = 0

x = [-b(b2-4a(c-3))]/2a Polynimial Degree = n, n > 2 , Algorithm Numerical Method Algorithm Iterative Method Numerical Method Iteration () Algorithm Converge Start Iteration = 0 Set et Iterative Technique Init. X0 [Iteration i]

Iteration += 1 Calculate xi Converge ei < ei-1 Estimate ei N Error ei < es Y Stop Errors

Algorithm Error Round-Off Error Truncation Error Errors Round-Off Error Memory Memory Integer, Long Integer, Float, Double Errors Truncation Error Algorithm

Infinite Terms Precision, Accuracy, Significant Digit Error Significant Digit Significant Digit Accuracy

Precision Precision Significant Digit Error Accuracy Precision = Accuracy = Precision = Accuracy = Precision = Accuracy = Precision = Accuracy = ccuracy Error Data Precision Variance SD Data

Significant Digits (Figures) Precision s.f. bar Examples 11.152 = 5 s.f. 0.00879 = 3 s.f. 000125600. = 6 s.f. 0123400000 = 7 s.f.

s.f. Round-Off 456.389864 (6 s.f.) = 456.390 1287563.94 (3 s.f.) = 1290000 Error Accuracy Absolute Error, Et Relative Error (%), et Estimated Error, ea Error (Relative Error) Absolute Error Relative Error

Error Estimation Convergence Divergence Mean Square Error(MSE) Error Error Mean Square Error Y Y N 1 MSE N

N1 2 ( Y Y ) i i i 0 RMSE Root Mean Square Error Square Root MSE 1 RMSE N N1

2 ( Y Y ) i i i 0 Functions Set Input Set Output Function Input Set () Mapping Map Function Inverse Function Inverse Function x

y f(.) x=f-1(y) y=f(x) Polynomial Functions Function Polynomial function Degree n (One n n 1 Argument) 2 y f ( x) an x an 1 x n n

i 0 i 1 ai x i a0 ai x i a2 x a1 x a0 Polynomial of degree 2: f(x) = x2 - x - 2 = (x+1)(x-2) Polynomial of degree 3: f(x) = x3/4 + 3x2/4 - 3x/2 - 2 = 1/4 (x+4)(x+1)(x-2) Polynomial of degree 4: f(x) = 1/14 (x+4)(x+1)(x-1)(x-3) + 0.5 Polynomial of degree 5: f(x) = 1/20 (x+4)(x+2)(x+1)(x-1)(x-3) + 2

http://en.wikipedia.org/wiki/Polynomial olynomial of degree 6: x) = 1/30 (x+3.5)(x+2)(x+1)(x-1)(x-3)(x-4) + 2 Polynomial of degree 7: f(x) = (x-3)(x-2)(x-1)(x)(x+1)(x+2)(x+3 Transcendental Function Function Algebraic Algebraic function Function Root Polynomial Transcendental Function Solution Polynomial Exponential Function Logarithm Trigonometric Functions

Function Transcendental Examples f1 ( x) x x f 2 ( x) c , c 0,1 f3 ( x) x f 4 ( x) x x 1 x f 5 ( x) log c x, c 0,1 f 6 ( x) sin x

Function Review Infinite Series Power Series Taylor Series Maclaurin Series Series Series Infinite Series Series Sequence Infinite Series Sequence an

Series a1+a2+a3+ S an a1 a2 a3 n 1 1 1 1 1 1 an n ; S n 2 2 4 8 n 1 2 NOTE: Index Summation 0 Convergence of Series Series Converge Term N Limit

S an lim S N lim n 0 N N N a n n 0 Series Converge Diverge Power Series

Power Series Infinite Series (c = Constant, an = coefficient, x Variable c) f ( x) an ( x c) n n 0 Power Series Taylor Series c=0 f ( x) an x n a0 a1 x a2 x 2 a3 x 3 n 0 Maclaurin Series Taylor Series/Maclaurin Series f(x) Function

Derivative a Taylor Series f(x) Power Series ( 3) (n) f ' (a ) f ' ' (a) f (a ) f (a) 2 3 f (a) ( x a) ( x a) ( x a ) ( x a) n 1! 2!

3! n! n 0 a = 0 Maclaurin Series f ' (0) f ' ' (0) 2 f (3) (0) 3 f ( n ) (0) n f ( x) f (0) x x x x 1! 2! 3! n! n 0

Example 1 f ' ' (a) f ( 3) ( a ) f ( 4) (a) 2 3 f ( x) f (a) f ' (a)( x a ) ( x a) ( x a) ( x a) 4 ... 2! 3! 4! f ' ' (0) 2 f (3) (0) 3 f ( 4) (0) 4 f ( x) f (0) f ' (0) x x x x .. 2! 3! 4!

Suppose f ( x) e x , f ' ( x) e x ,..., f ( n ) ( x) e x f ( n ) (0) 1 x2 x3 x4 xk We have f ( x) e 1 x ... 2! 3! 4! k 0 k! x Example find f (2) e 2 4 5 2 4 8 16 Forth Order Approximat ion : e 2 1 2 7 2 6 24 4 8 16 32

64 Sixth Order Approximat ion : e 2 1 2 7.356 2 6 24 120 720 4 8 16 32 64 128 256 Eighth Order Approximat ion : e 2 1 2 7.3873 2 6 24 120 720 5040 40320 Actual Value : e 2 7.389056099 Second Order Approximat ion : e 2 1 2 e-2 4 Significant Digit

Example 2: f ' ' ( 0) 2 f ( 3 ) ( 0) 3 f ( 4 ) ( 0) 4 f ( x) f (0) f ' (a ) x x x x .. 2! 3! 4! Suppose f ( x) sin x, f ' ( x) cos x, f ' ' ( x) sin x, f ' ' ' ( x) cos x, f ( 4) sin( x),... x3 x5 x7 ( 1) n 2 n 1

We have f ( x) sin x 0 x 0 0 0 ... x 3! 5! 7! ( 2 n 1 )! n 0 Example find f (0.5) sin 0.5 radian Second Order Approximat ion : sin 0.5 0.5 0.5 3 Forth Order Approximat ion : sin 0.5 0.5 0.47916667

3! 0.5 3 0.5 5 Sixth Order Approximat ion : sin 0.5 0.5 0.47942708 3! 5! 0.5 3 0.5 5 0.5 7 Eighth Order Approximat ion : sin 0.5 0.5 0.479425533 3! 5! 7! Actual Value : sin 0.5 0.479425538 cos 0.5 8 Significant Digit Taylor (Maclaurin) Series xn

x2 x3 x 4 e 1 x ; x n ! 2! 3! 4! n 0 x xn log( 1 x) ; 1 x 1 n 1 n log( 1 x) ( 1) n 1

n 1 xn ; 1 x 1 n 1 x n ; x 1 1 x n 0 1 x m 1 m n x ; x 1 1 x n 0 x n nx

; x 1 (1 x) 2 n 0 ( 1) n (2n)! 1 x x n 1 12 x 2 n 0 (1 2n )( n!) ( 4 n) 1 8 x 2 161 x 3 ( 1) n 2 n 1 x3 x5 sin x x x

; x 3! 5! n 0 ( 2 n 1)! ( 1) n 2 n x2 x4 cos x x 1 ; x ( 2 n )! 2 ! 4! n 0 5

128 x 4 ; x 1 MATLAB Program Function MATLAB Function Vector x Vector y return z1 z2; x=-3:.1:3; y = -3:.1:3 z1 = 2sin(x^2+y^2)/(x^2+y^2) z2 = xsiny-ycosx mesh (x,y,z1), (x,y,z2), (x,z1), (y,z2) (z1,z2) Surf function, shading modes Contour plot Function MATLAB Tutorial 4-5 END OF WEEK 10 Download HW 7 Next Week Chapter 8: Zeros of Functions

MATLAB Program function [z1,z2]=test(x,y) % function [z1,z2]=test(x,y) % Test matlab program calculate z1=f(x,y)=sin(x^2+y^2)/(x^2+y^2) % and z2=f(x,y)=xsiny-ysinx

n=length(x); m=length(y); z1=zeros(n,m); z2=zeros(n,m); for i = 1:n for j= 1:m t=x(i)^2+y(j)^2; if (t ~= 0) z1(i,j)=sin(t)/t; else z1(i,j)=1; end

z2(i,j)=x(i)*sin(y(j))-y(j)*cos(x(i)); end end MATLAB Program function view2(x,y,z,az) mesh(x,y,z); view(0,az); for i = 0:10:360 view(i,az); pause(0.05); end MATLAB Program function view3(az) view(0,az); for i = 0:10:360 view(i,az);

pause(0.05); end

Recently Viewed Presentations

  • HiPath 3000 V6.0 Коммуникационная платформа для малых и ...

    HiPath 3000 V6.0 Коммуникационная платформа для малых и ...

    HiPath 3000 V6.0 Коммуникационная платформа для системы арбитражных судов РФ
  • Cheyenne CAP Composite Squadron Organization Chart (Present)

    Cheyenne CAP Composite Squadron Organization Chart (Present)

    Wyoming CAP Wing Organization Chart (May 2017) WYWG/CS Support Staff . Wing Staff. WYWG/DO. Maj Schreurs. WYWG/DCP. Lt Col BJ Carlson. WYWG/HR. Maj Seng. WYWG/DAE
  • Ah Pro Update Meeting

    Ah Pro Update Meeting

    Initial POV speed: 20 mph (32.2 kph) Initial SV speed: 45 mph (72.4 kph) Test began when headway from the SV to the POV was 329 ft (100 m) Test ended when either of the following occurred: The required FCW...
  • Revolutions and National States in the Atlantic World

    Revolutions and National States in the Atlantic World

    Nat. Assem. declared war on Austria, Prussia, Spain, Britain, Netherlands. The Convention (legislative body elected by universal male suffrage) Universal conscription of people and resources for war. Sought out enemies at home: executed many with guillotine (Louis and Marie Antoinette)
  • Presentazione di PowerPoint - IAB

    Presentazione di PowerPoint - IAB

    The survey on Enterprises Final Consumption of Energy Products (COEN) COEN survey aims at estimating the enterprises consumption of a list of products belonging to the following categories: - Electricity and heat - Natural gas - Oil and petroleum products...
  • Thermodynamics - Mr. Delemeester&#x27;s Virtual Classroom

    Thermodynamics - Mr. Delemeester's Virtual Classroom

    12-1: Using "Desire" for electrons to Predict Bonding. There is a "Bonding Continuum"from Ionic to Nonpolar (pg 464) Polarity of Bonds due to . electronegativity. of atoms involved in the bond Ionic Bonds. Electronegativity difference between Atoms is _____ or...
  • GCSE ICT - ICTRESOURCES.net

    GCSE ICT - ICTRESOURCES.net

    sounds, suck and puff switches used by those people unable to use their hands. to manipulate a keyboard or mouse and the input devices used in computer. games (such as wireless games controllers) and at supermarket terminals. Nb:Please. write out...
  • TAEKWONDO - WordPress.com

    TAEKWONDO - WordPress.com

    taekwondo. que És? edat per a comenÇar a practicar-ho? com . s'entrena? quants dies entrenem? tipus de campionats? tipus de protecciÓ? categories . de cinturons