CPE 332 Computer Engineering Mathematics II

CPE CPE 332 332 Computer Computer Engineering Engineering Mathematics Mathematics IIII Week 10 Part III, Chapter 7 Error, Transcendental Function and Power Series Today Topics

Numerical Methods Errors Transcendental Function Series Power Series Taylor Series MacLaurin Series Function Approximation HW VII QZ IV Next Week MT Exam and Cumulative Grades Numerical Methods Solution

Derivative Integrate Differential Equation Fourier Transform, Laplace Transform Z-Transform Analytical Method ( Explicit Form) Numerical Method Numerical Methods Numerical Graphical Method Interpolation Algorithm

(Error Analysis) Convergence Complexity Algorithm Y=f(x)=2x -4x -7x+5 3 2 f(k) f(0), f(-2), f(7) f(x)=k x f(x) = 0 Quadratic Equation Polynomial Degree = 1, Straight Line y = f(x) = mx+b; x = (y-b)/m Polynomial Degree = 2 y = f(x) = ax2+bx+c y = f(x) = 3 y = f(x) = ax2+bx+(c-3) = 0

x = [-b(b2-4a(c-3))]/2a Polynimial Degree = n, n > 2 , Algorithm Numerical Method Algorithm Iterative Method Numerical Method Iteration () Algorithm Converge Start Iteration = 0 Set et Iterative Technique Init. X0 [Iteration i]

Iteration += 1 Calculate xi Converge ei < ei-1 Estimate ei N Error ei < es Y Stop Errors

Algorithm Error Round-Off Error Truncation Error Errors Round-Off Error Memory Memory Integer, Long Integer, Float, Double Errors Truncation Error Algorithm

Infinite Terms Precision, Accuracy, Significant Digit Error Significant Digit Significant Digit Accuracy

Precision Precision Significant Digit Error Accuracy Precision = Accuracy = Precision = Accuracy = Precision = Accuracy = Precision = Accuracy = ccuracy Error Data Precision Variance SD Data

Significant Digits (Figures) Precision s.f. bar Examples 11.152 = 5 s.f. 0.00879 = 3 s.f. 000125600. = 6 s.f. 0123400000 = 7 s.f.

s.f. Round-Off 456.389864 (6 s.f.) = 456.390 1287563.94 (3 s.f.) = 1290000 Error Accuracy Absolute Error, Et Relative Error (%), et Estimated Error, ea Error (Relative Error) Absolute Error Relative Error

Error Estimation Convergence Divergence Mean Square Error(MSE) Error Error Mean Square Error Y Y N 1 MSE N

N1 2 ( Y Y ) i i i 0 RMSE Root Mean Square Error Square Root MSE 1 RMSE N N1

2 ( Y Y ) i i i 0 Functions Set Input Set Output Function Input Set () Mapping Map Function Inverse Function Inverse Function x

y f(.) x=f-1(y) y=f(x) Polynomial Functions Function Polynomial function Degree n (One n n 1 Argument) 2 y f ( x) an x an 1 x n n

i 0 i 1 ai x i a0 ai x i a2 x a1 x a0 Polynomial of degree 2: f(x) = x2 - x - 2 = (x+1)(x-2) Polynomial of degree 3: f(x) = x3/4 + 3x2/4 - 3x/2 - 2 = 1/4 (x+4)(x+1)(x-2) Polynomial of degree 4: f(x) = 1/14 (x+4)(x+1)(x-1)(x-3) + 0.5 Polynomial of degree 5: f(x) = 1/20 (x+4)(x+2)(x+1)(x-1)(x-3) + 2

http://en.wikipedia.org/wiki/Polynomial olynomial of degree 6: x) = 1/30 (x+3.5)(x+2)(x+1)(x-1)(x-3)(x-4) + 2 Polynomial of degree 7: f(x) = (x-3)(x-2)(x-1)(x)(x+1)(x+2)(x+3 Transcendental Function Function Algebraic Algebraic function Function Root Polynomial Transcendental Function Solution Polynomial Exponential Function Logarithm Trigonometric Functions

Function Transcendental Examples f1 ( x) x x f 2 ( x) c , c 0,1 f3 ( x) x f 4 ( x) x x 1 x f 5 ( x) log c x, c 0,1 f 6 ( x) sin x

Function Review Infinite Series Power Series Taylor Series Maclaurin Series Series Series Infinite Series Series Sequence Infinite Series Sequence an

Series a1+a2+a3+ S an a1 a2 a3 n 1 1 1 1 1 1 an n ; S n 2 2 4 8 n 1 2 NOTE: Index Summation 0 Convergence of Series Series Converge Term N Limit

S an lim S N lim n 0 N N N a n n 0 Series Converge Diverge Power Series

Power Series Infinite Series (c = Constant, an = coefficient, x Variable c) f ( x) an ( x c) n n 0 Power Series Taylor Series c=0 f ( x) an x n a0 a1 x a2 x 2 a3 x 3 n 0 Maclaurin Series Taylor Series/Maclaurin Series f(x) Function

Derivative a Taylor Series f(x) Power Series ( 3) (n) f ' (a ) f ' ' (a) f (a ) f (a) 2 3 f (a) ( x a) ( x a) ( x a ) ( x a) n 1! 2!

3! n! n 0 a = 0 Maclaurin Series f ' (0) f ' ' (0) 2 f (3) (0) 3 f ( n ) (0) n f ( x) f (0) x x x x 1! 2! 3! n! n 0

Example 1 f ' ' (a) f ( 3) ( a ) f ( 4) (a) 2 3 f ( x) f (a) f ' (a)( x a ) ( x a) ( x a) ( x a) 4 ... 2! 3! 4! f ' ' (0) 2 f (3) (0) 3 f ( 4) (0) 4 f ( x) f (0) f ' (0) x x x x .. 2! 3! 4!

Suppose f ( x) e x , f ' ( x) e x ,..., f ( n ) ( x) e x f ( n ) (0) 1 x2 x3 x4 xk We have f ( x) e 1 x ... 2! 3! 4! k 0 k! x Example find f (2) e 2 4 5 2 4 8 16 Forth Order Approximat ion : e 2 1 2 7 2 6 24 4 8 16 32

64 Sixth Order Approximat ion : e 2 1 2 7.356 2 6 24 120 720 4 8 16 32 64 128 256 Eighth Order Approximat ion : e 2 1 2 7.3873 2 6 24 120 720 5040 40320 Actual Value : e 2 7.389056099 Second Order Approximat ion : e 2 1 2 e-2 4 Significant Digit

Example 2: f ' ' ( 0) 2 f ( 3 ) ( 0) 3 f ( 4 ) ( 0) 4 f ( x) f (0) f ' (a ) x x x x .. 2! 3! 4! Suppose f ( x) sin x, f ' ( x) cos x, f ' ' ( x) sin x, f ' ' ' ( x) cos x, f ( 4) sin( x),... x3 x5 x7 ( 1) n 2 n 1

We have f ( x) sin x 0 x 0 0 0 ... x 3! 5! 7! ( 2 n 1 )! n 0 Example find f (0.5) sin 0.5 radian Second Order Approximat ion : sin 0.5 0.5 0.5 3 Forth Order Approximat ion : sin 0.5 0.5 0.47916667

3! 0.5 3 0.5 5 Sixth Order Approximat ion : sin 0.5 0.5 0.47942708 3! 5! 0.5 3 0.5 5 0.5 7 Eighth Order Approximat ion : sin 0.5 0.5 0.479425533 3! 5! 7! Actual Value : sin 0.5 0.479425538 cos 0.5 8 Significant Digit Taylor (Maclaurin) Series xn

x2 x3 x 4 e 1 x ; x n ! 2! 3! 4! n 0 x xn log( 1 x) ; 1 x 1 n 1 n log( 1 x) ( 1) n 1

n 1 xn ; 1 x 1 n 1 x n ; x 1 1 x n 0 1 x m 1 m n x ; x 1 1 x n 0 x n nx

; x 1 (1 x) 2 n 0 ( 1) n (2n)! 1 x x n 1 12 x 2 n 0 (1 2n )( n!) ( 4 n) 1 8 x 2 161 x 3 ( 1) n 2 n 1 x3 x5 sin x x x

; x 3! 5! n 0 ( 2 n 1)! ( 1) n 2 n x2 x4 cos x x 1 ; x ( 2 n )! 2 ! 4! n 0 5

128 x 4 ; x 1 MATLAB Program Function MATLAB Function Vector x Vector y return z1 z2; x=-3:.1:3; y = -3:.1:3 z1 = 2sin(x^2+y^2)/(x^2+y^2) z2 = xsiny-ycosx mesh (x,y,z1), (x,y,z2), (x,z1), (y,z2) (z1,z2) Surf function, shading modes Contour plot Function MATLAB Tutorial 4-5 END OF WEEK 10 Download HW 7 Next Week Chapter 8: Zeros of Functions

MATLAB Program function [z1,z2]=test(x,y) % function [z1,z2]=test(x,y) % Test matlab program calculate z1=f(x,y)=sin(x^2+y^2)/(x^2+y^2) % and z2=f(x,y)=xsiny-ysinx

n=length(x); m=length(y); z1=zeros(n,m); z2=zeros(n,m); for i = 1:n for j= 1:m t=x(i)^2+y(j)^2; if (t ~= 0) z1(i,j)=sin(t)/t; else z1(i,j)=1; end

z2(i,j)=x(i)*sin(y(j))-y(j)*cos(x(i)); end end MATLAB Program function view2(x,y,z,az) mesh(x,y,z); view(0,az); for i = 0:10:360 view(i,az); pause(0.05); end MATLAB Program function view3(az) view(0,az); for i = 0:10:360 view(i,az);

pause(0.05); end

Recently Viewed Presentations

  • PENGERTIAN STATISTIKA - Universitas Negeri Yogyakarta

    PENGERTIAN STATISTIKA - Universitas Negeri Yogyakarta

    PENGERTIAN STATISTIKA Dr. Siswantoyo [email protected] Pengertian istilah Statistic .....state NEGARA Utk berbagai bidang khdupan rerata,% sensus dll ARTI SEMPIT & LUAS ARTI SEMPIT (Statistik Deskriptif) ARTI LUAS susunan angka yg memberikan gambaran tentang data yg disajikan dlm bentuk tabel, diagram,...
  • Generating Matlab-based 3D FDFD Computational Modeling by ...

    Generating Matlab-based 3D FDFD Computational Modeling by ...

    Title: Generating Matlab-based 3D FDFD Computational Modeling by applying the Preconditioner Qiuzhao Dong(NU), Carey Rapapport(NU) and Misha Kilmer(Tufts) (contact: [email protected],[email protected], [email protected] ) This work was supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the...
  • Overview of Source Apportionment Methods

    Overview of Source Apportionment Methods

    East Helena Source Apportionment Study: Particulate source apportionment analysis using the chemical mass balance receptor model, Vol. III Appendices. Prepared for State of Montana, Dept. of Health & Environmental Sciences, Helena, MT, by NEA Laboratories, Inc., Beaverton, OR.
  • PowerPoint Presentation

    PowerPoint Presentation

    Mad Hatter: You were much more "muchier". You've lost your muchness. Alice: Lost my muchness, have I? Have Courage… Make Your Work Count!! Turn the mirror around on YOU. I am convinced a key differentiator for GREAT leaders is the...
  • Definitions of Visual Impairments

    Definitions of Visual Impairments

    Visual Impairments TLSE 240 Definitions of Visual Impairments Visual Impairments /blend/ - vision cannot be primary learning channel Partially Sighted - some useful vision - person may see colors and figures with blurring - vision between 20/70 and 20/200 Legal...
  • PowerPoint Presentation

    PowerPoint Presentation

    What is Network ? Computer network : A collection of computing devices that areconnectedin various ways in order tocommunicate andshare resources .. Usually, the connections between computers in a network are made using
  • &quot;Safeguards or Shackles?&quot;

    "Safeguards or Shackles?"

    Section 5:2 - power exercised by a doctor or Approved Clinician in charge of the patient's treatment, or their nominated deputy. The patient must be an inpatient, not necessarily in a psychiatric Hospital. Patient (P)could be in a general hospital,...
  • Introduction to ZPortal - LAU Libraries

    Introduction to ZPortal - LAU Libraries

    Introduction to ZPORTAL Prepared by Houeida K. Charara Electronic Resources Librarian LAU Libraries ©2010 * What is ZPORTAL? ZPORTAL is a library portal or federated search engine.